Robust Geotag Generation Algorithms from Noisy Loran Data for Security Applications

Di Qiu, Sherman Lo, Dan Boneh, Per Enge *Stanford University* ILA 2009

Sponsored by FAA Loran Program CRDA 2000-G-028

Geo-security: Why?

Doesn't require memorization

- Users don't have to memorize location dependent signal characteristics.
- Resistant to misplaced tokens
 - Users won't forget to bring location.
- Can't be delegated
 - Users can't lend location to someone else.
- Low awareness
- Don't need physical access to attack

"On the Internet, nobody knows you're a dog."

Geo-security: Big picture

- Use location-dependent signal characteristics from multiple transmitters.
- Restrict access of information content or electronic devices.

UNIVERSITY

Geo-security: How?

UNIVERSITY

Geotag applications

- Loopt
 - Social networking
- Digital Manners Policy
 - Microsoft
- Data access control
 - Geo-encryption
- Geo-fencing
 - Laptop anti-theft technology

Performance standards

- Two hypotheses
 - H_0 : accepting as authentic user
 - H_1 : rejecting as an attacker
- Two errors
 - False reject: accepting hypothesis H_1 when H_0 is true
 - False accept: accepting hypothesis H_0 when H_1 is true

Geotag generation

Quantization-based

$$T(i) = k; x_i \in S_k = [k\Delta_i, (k+1)\Delta_i)$$
$$M(\widetilde{T}, T') = \begin{cases} 1 & \text{if } \frac{1}{n} \sum_{i=1}^n \widetilde{T}(i) \oplus T'(i) = 1\\ 0 & \text{otherwise.} \end{cases}$$

- Fuzzy extractor-based
- Pattern classification-based
 - k-Nearest Neighbor (kNN)
 - Support Vector Machines (SVM)

Quantization-based geotag reproducibility

- Tamper-resistant device and self-authenticated signals for spoofing attacks.
- Temporal variation degrades performance
- Parameters --TD, ECD,SNR-- from GRI 9940
- Non-monotonic trend comes from quantization

Fuzzy extractor

$$x \longrightarrow \begin{array}{c|c} \text{Generation} & \xrightarrow{\rightarrow} P & \dots & x' \xrightarrow{\rightarrow} \\ & \xrightarrow{\rightarrow} T & P \xrightarrow{\rightarrow} \end{array} \begin{array}{c|c} \text{Reproduce} & \xrightarrow{\rightarrow} T' \end{array}$$

Definition. A fuzzy extractor is a tuple (M, t_0 , Gen, Rep), where M is the metric space with a distance function dis, Gen is a generate procedure and Rep is a reproduce procedure, which has the following properties:

1.If
$$dis(x, x') \le t_0, T' = T$$
.
2.If $dis(x, x') \ge t_0, T' \ne T$.

Y. Dodis el al., "Fuzzy extractors: How to generate strong keys from biometrics and other noisy data," 2004.

Three fuzzy extractors for location data

- Euclidean metric fuzzy extractor
 - Noise, bias, and quantization errors
 - Adjust offsets
 - Real numbers
- Hamming metric fuzzy extractors
 - Constructions
 - Reed-Solomon based fuzzy extractor
 - Secret Sharing based fuzzy extractor
 - Offline transmitter
 - Inputs are integers: quantized values of location parameters

Performance of Euclidean fuzzy extractor

STANFORD UNIVERSITY

RS-based fuzzy extractor – "Locking"

RS-based fuzzy extractor – "Unlocking"

Performance analysis: RS-based

Pattern classification

- Goal: Extract decision rules from data to assign class labels to future data samples.
 - Maximize the difference between classes
 - Minimize the within-class scatter
- The quality of a feature vector is essential to spatial discrimination/decorrelation.

Dimensionality reduction

- "Curse of dimensionality" high dimensional data are difficult to work with.
 - The added parameters or features can increase noise
 - Enough observations to get good estimates
- Dimensionality reduction
 - Efficiency computation and storage costs
 - Classification performance
 - Ease of modeling

Geotag generation using pattern classification

K-Nearest Neighbor (kNN)

- 'Memory' based classification
- No training phase is required: 'lazy' learning approach
- Given data point *x*, find the *k* nearest training inputs x_1 , x_2, \ldots, x_k to *x* using a distance metric.
- Large k produces smoother boundaries and reduces the impact of noise.
- Computational cost

Visualization of kNN, k=8

- Easy to implement but computationally intensive.
- Euclidean distance metric

Support Vector Machines (SVM)

- Optimal separating hyperplane find a hyperplane with minimum misclassification rate
- Non-linear SVM
 - Perform a non-linear mapping of the feature vector *x* onto a high-dimensional space
 - Construct an optimal separating hyperplane in the highdimensional space
- Tradeoff margin and capacity

Visualization of SVM

- Sequential Minimal Optimization (SMO) is applied to solve the optimization problem.
- Large kernel argument reduces misclassification errors but lowers discrimination ability.

Data set to evaluate spatial discrimination

STANFORD UNIVERSITY

Classifier visualization

Spatial discrimination comparison

STANFORD UNIVERSITY

Conclusion

- Modeled geo-security and standardized the performance evaluation.
 - Geotag reproducibility and spatial discriminiation
- Developed fuzzy extractors to reduce continuity risks.
 - Euclidean metric for noise, seasonal bias, and quantization error
 - Hamming metric for offline transmitters
- Applied pattern classification for geotag generation to improve spatial discrimination.
 - kNN and SVM

Acknowledgment

The authors would like to thank Mitch Narins of the FAA, Dr. Greg Johnson and Ruslan Shalaev at Alion Science & Technology and USCG LSU for their support and help during the research.

Thank you!

Questions?

Backup slides

C '	TANFORD	
5	IANFORD 2 UNIVERSITY	.8

Geotag reproducibility

- 90-day seasonal monitor data
- Same hypothesis problem
- Tradeoff by varying kernel argument