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Geo-security: Why?

Doesn’t require memorization
• Users don’t have to memorize location dependent signal 

characteristics.

Resistant to misplaced tokens
• Users won’t forget to bring location.

Can’t be delegated
• Users can’t lend location to someone else.

Low awareness

Don’t need physical access to attack
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Geo-security: Big picture

Use location-dependent signal characteristics from multiple 
transmitters.
Restrict access of information content or electronic devices.
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Geo-security: How?
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Geotag applications

Loopt
• Social networking

Digital Manners Policy
• Microsoft

Data access control
• Geo-encryption

Geo-fencing
• Laptop anti-theft technology

User A

User B

Central server
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Performance standards

Two hypotheses
• H0: accepting as authentic user
• H1: rejecting as an attacker

Two errors
• False reject: accepting hypothesis H1 when H0 is true
• False accept: accepting hypothesis H0 when H1 is true
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Geotag generation

Quantization-based

Fuzzy extractor-based 
Pattern classification-based
• k-Nearest Neighbor (kNN)
• Support Vector Machines (SVM)
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Quantization-based geotag reproducibility

Tamper-resistant device and self-authenticated signals for spoofing attacks.
Temporal variation degrades performance
Parameters --TD, ECD,SNR-- from GRI 9940
Non-monotonic trend comes from quantization
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Fuzzy extractor

9

Generationx P Reproducex’
P

…

T T’

Definition. A fuzzy extractor is a tuple (M, t0, Gen, Rep), 
where M is the metric space with a distance function dis, Gen 
is a generate procedure and Rep is a reproduce procedure, 
which has the following properties:

1.If dis(x, x’) ≤ t0, T’ = T.
2.If dis(x, x’) ≥ t0, T’ ≠ T.

Y. Dodis el al., “Fuzzy extractors: How to generate strong keys from biometrics and 
other noisy data,” 2004.



Three fuzzy extractors for location data

Euclidean metric fuzzy extractor
• Noise, bias, and quantization errors
• Adjust offsets
• Real numbers

Hamming metric fuzzy extractors
• Constructions

░ Reed-Solomon based fuzzy extractor
░ Secret Sharing based fuzzy extractor

• Offline transmitter
• Inputs are integers: quantized values of location parameters
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Performance of Euclidean fuzzy extractor
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84% reduction
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RS-based fuzzy extractor – “Locking”
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RS-based fuzzy extractor – “Unlocking”
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Performance analysis: RS-based 
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Pattern classification

Goal: Extract decision rules from data to assign class labels 
to future data samples.
• Maximize the difference between classes
• Minimize the within-class scatter

The quality of a feature vector is essential to spatial 
discrimination/decorrelation.

“Good” features “Bad” features

Properties

Linear separability Non-linear separability Highly correlated Multi-modal
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Dimensionality reduction

“Curse of dimensionality” – high dimensional data 
are difficult to work with.
• The added parameters or features can increase noise
• Enough observations to get good estimates

Dimensionality reduction
• Efficiency – computation and storage costs
• Classification performance
• Ease of modeling
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Geotag generation using pattern classification

ClassificationSignal processingData collection Dimensionality
reduction

Model 
selection

T = f(ω)

Geotag 
database

Calibration

?
Decision
making

Verification

T’=f(ω’)

T = f(ω)

Matching
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K-Nearest Neighbor (kNN)

‘Memory’ based classification

No training phase is required: ‘lazy’ learning approach

Given data point x, find the k nearest training inputs x1, 
x2,…, xk to x using a distance metric.

Large k produces smoother boundaries and reduces the 
impact of noise.

Computational cost

x1

x2

x
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Visualization of kNN, k=8

Easy to implement but computationally intensive.
Euclidean distance metric 
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Support Vector Machines (SVM)

Optimal separating hyperplane – find a hyperplane with 
minimum misclassification rate
Non-linear SVM
• Perform a non-linear mapping of the feature vector x onto a 

high-dimensional space
• Construct an optimal separating hyperplane in the high-

dimensional space
Tradeoff – margin and capacity

ϕ(x) wTzx z y

x1

x2
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x1
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Visualization of SVM
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Sequential Minimal Optimization (SMO) is applied to solve the 
optimization problem.
Large kernel argument reduces misclassification errors but lowers 
discrimination ability.
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Data set to evaluate spatial discrimination
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Classifier visualization
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Spatial discrimination comparison
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Conclusion

Modeled geo-security and standardized the performance 
evaluation.
• Geotag reproducibility and spatial discriminiation

Developed fuzzy extractors to reduce continuity risks.
• Euclidean metric for noise, seasonal bias, and quantization error
• Hamming metric for offline transmitters

Applied pattern classification for geotag generation to improve 
spatial discrimination.
• kNN and SVM
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Thank you!

Questions?
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Backup slides
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Geotag reproducibility

90-day seasonal monitor data
Same hypothesis problem
Tradeoff by varying kernel argument
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